

### **Current Directions in Learning Technology Standards**

**Avron Barr** Institute for Defense Analyses IEEE Learning Technology Standards Committee



for Humanity









Why Standards?

- Standards Solve Market Problems
  - Interoperability common interpretation of data
    - Lowers costs of product development & integration
    - Enables supply chains to develop
    - Facilitates competition and grows markets
    - Reduces vendor lock-in (third-party & after-market components)
    - Lowers barriers to entry plug-and-play
  - Quality & Product Category Standards
    - Define best practices
    - Improve reliability, consistency, quality (saving money!)
    - Engender trust (hence willingness to buy)
- Adoption is the only metric of success

## The Mandatory Slide ...

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, IN STANT MESSAGING, ETC.)





https://xkcd.com/927/

# You thought the cartoon was a joke?

**IEEE Standard for Learning** Technology-Data Model for **Reusable Competency Definitions** 

**IEEE Computer Society** 

Sponsored by the Learning Technology Standards Committee



IMS Reusable Definition of Competency or Educational **Objective - Information Model** 





qualifications and Occupations

European Skills/Competences,

 $\circ$ 

S

## Learning Technology Standards Have a Long History

- Aviation Industry CBT Committee (AICC) (1988)
- Simulation Interoperability Workshop (SIW) (1989) develops DIS and becomes Simulation Interoperability Standards Organization (1997) and IEEE organization (2003)
- EDUCAUSE National Learning Infrastructure Initiative (1995) [becomes] Instructional Management System project (1997) [spins out] (1999) [becomes] IMS Global
- ARIADNE (EU Project) (1996)
- US Postsecondary Educational Standards Committee (PESC) (1997)
- IEEE Learning Technology Standards Committee (IEEE LTSC) (1997)
- HR-XML Consortium (1999) [becomes] HR Open Standards (2014)
- W3C MathML Group (released 1998) and OpenMath (released 2000)

After Robby Robson, 2017



### **Some Current Learning Technology Standards**

- SCORM (a reference model)
  - Includes IMS Content Packaging, LOM, AICC CMI, and IEEE protocol standards
- Competency and credential standards
  - RDCEO, inLOC, LIP, HR-XML, MedBiquitous. Each serves a different market.
- Expanding LMS capabilities
  - IMS Learning Tools Interoperability
- Content metadat
  - LOM, LRMI, schema.org
- Learning analytics & data exchange in a distributed architecture



- xAPI, IMS Caliper

## Standards Assume a Model of the Marketplace: SCORM and the Enterprise Training Supply Chain





## **Standards Assume a Model of the Marketplace: IMS Global and the Higher Education Supply Chain**





## **Learning Portability: Fundamental Changes are Afoot**

#### Yesterday

- Until recently, content was stored, managed, and delivered via an LMS silo
- Schools, teachers and trainers could assume that they were the learner's sole source
- Data was gathered for human interpretation, e.g. in daily reports and transcripts
- The principal type of learning activity involved flipping through browser pages
- Online assessment limited to quizzes
- Publishers depend on teacher feedback about their products

#### Today

- An increasing amount of content is cloud- or app-based. Data is distributed.
- Students today work simultaneously with multiple institutions and on-line providers
- AI-enhanced products will benefit from a wide range of historical and real-time data
- The range of technologies and activities is broad and getting much broader
- Continuous collection and analysis of lots of learner activity data by multiple stakeholders
- Publishers are also monitoring learner activity

While SCORM and other standards from that era stressed content portability across LMSs, today's market issue is "learning portability"



## **The IEEE Standards Development Process**

Community, Consensus, Clarity





# Institute of Electrical and Electronic EngineersAdvancing Technology

- The world's largest technical professional organization for the advancement of technology
- 420,000+ Members (majority not in US)
- Professional Association
  - Publications, Conferences, Member Services
  - Standards
- Organized into societies, councils, and the IEEE Standards Association (IEEE-SA)
- IEEE-SA
  - Over 7000 individual and 200 Corporate Members
  - Offices in US, Asia (China / India), Europe
  - 2,000+ standards + other consensus products



#### **IEEE-SA Principles\***



#### Due process

- Follow highly visible procedures
- Set at the IEEE-SA, Sponsor, and Working Group level
- Process is transparent
- Openness
  - All interested parties can actively participate
- Consensus
  - A clearly defined percentage required for approval
- Balance
  - All interested parties are represented
  - No single party has an overwhelming influence
- Right of appeal
  - Anyone can appeal any decision at any point



# **How Standards are Made**

- Other SDOs produce standards using procedures that may or may not follow the same principles.
- De facto standards may arise from proprietary Intellectual Property (IP) and be controlled by a single entity



## Most Relevant International Standards Development Organizations for Learning, Education & Training

| SDO                             | Туре                      | Focus                                                                                                                                                                                  |
|---------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dublin Core Metadata Initiative | Metadata (Education part) | Metadata, includes educational elements                                                                                                                                                |
| IEEE Standards association      | Formal SDO                | General interoperability standards. Industry, academia, and<br>government. Includes the Learning Technology Standards Committee,<br>but there are other relevant standards activities. |
| IMS Global Learning Consortium  | Industry Consortium       | General interoperability standards. Participants tend to be connected with formal education.                                                                                           |
| ISO/IEC JTC1 SC36               | Formal SDO                | General interoperability standards. Participation from national bodies.                                                                                                                |
| W3C                             | Open Consortium           | Web / Semantic Web – also used for its communities structure                                                                                                                           |
| Schema.org                      | Not an SDO but relevant   | Microdata for describing resources                                                                                                                                                     |
| HR Open                         | Industry Consortium       | Applicant Tracking Systems, Background checks, HR systems, etc.                                                                                                                        |

### **Types of IEEE Standards Projects**

- A standard, containing mandatory requirements,
- A recommended practice, outlining preferred procedures, or
- A **guide**, offering suggestions for working with a technology.
- Examples:
  - Lists of terms, definitions, or symbols
  - Measurement/tests of the performance of any device, apparatus, system
  - Characteristics, performance, and safety requirements
  - Recommendations reflecting state-of-the-art in the application of principles
- Key question
  - Is the standard necessary for market growth, stability, and/or innovation?

#### What Can be Standardized?

PHYSICAL STANDARDS

- Weights and measures
- Sizes and shapes
- Stresses and tolerances
- Allocation of spectrum
- What wires do what

DATA STANDARDS

- Formats & representations
- Semantics & interpretation
- Persistence and availability
- Metadata and curation
- Privacy and security

#### PROCESS STANDARDS

- Governance and reporting
- Process management
- Quality control & assurance
- Safety & legal conformance
- Ethics and behaviors

A given standard can involve aspects of two or even all three categories



#### **The IEEE Standards Association's Process**



## Publishing a Standard is Just the Beginning

| Only the market can establish a standard        |                                                  | Initial<br>Implementations                | Adoption-<br>Stabilization<br>- Test Suites                                                  |
|-------------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                 | Standard Writing<br>- Compromises<br>- Consensus | - Publication<br>- PR<br>- First Products | <ul> <li>Products</li> <li>Conformance</li> <li>Buyer require</li> <li>compliance</li> </ul> |
| Pre-standards<br>Activities<br>- Principles     | - Champions<br>- Prototypes                      | Rude Awakening<br>- User feedback         |                                                                                              |
| - Requirements<br>- Early Specs<br>- Prototypes |                                                  |                                           |                                                                                              |

After Robby Robson, 2017

E

#### **Barriers – How Consensus Standards Fail**

- Too complex to implement affordably
- Too ambiguous to implement consistently
- Does not result in the needed level of interoperability
- Lack of promotion to help the marketplace understand its value
- Inelegant or outdated choices in technical implementation
- Lack of support for implementers (docs, help desk, conformance test, ...)
- Competition with alternative standards, e.g., proprietary solutions
- Bad timing, e.g., technical breakthroughs or changes in market structure



# **Current Standards Projects at the LTSC**

- SCORM Renewal, 1484.11.3 ..., Andy Johnson
- Student Data Governance, P7004, Marsali Hancock
- AR Learning Experience Model, P1589, Fridolin Wild
- Mobile Learning Platforms, P7919.1, Robby Robson
- Reusable Competency Definitions, P1484.20.1,
- Adaptive Instructional Systems, P2247.1
- ▶ xAPI, P9274.1.1



# P9274.1.1 xAPI

- xAPI 1.0.3 base standard
- Recommended practice standard for implementers
- Future
  - xAPI profiles standard
  - Individual xAPI profiles
  - xAPI 2.0
- Jono Poltrack, Chair. <u>http://sites.ieee.org/sagroups-9274-1-</u>
  <u>1/</u>
- Meeting this afternoon at IDA



# P 1484.20.1 Reusable Competency Definitions

- Revision of a10-year-old standard with limited impact, but the time is ripe.
- Based on the common elements identified in the Ecosystem Mapping Project's crosswalk of existing standards for representing competencies and competency frameworks.
- Chair, Jim Goodell
- Kickoff meeting, Monday, September 10
- http://sites.ieee.org/sagroups-1484-20-1/



### **P2247.1 – Standard for the Classification of AISs**

- Enable consumers to make comparisons among current and future products
- Inform purchasing and deployment decisions
- Serve as a reference for subsequent technical standards for data exchange
- Promote "ethically aligned design" for the use of AI
- Define:
  - The operation and common features of AISs, and the way they use AI
  - Categories of AISs
  - Standardized component definitions
  - Levels of functionality and adaptation "power"
  - Design approach & methods used
- Bob Sottilare, Chair. Bi-weekly meetings. Silicon Valley Conference, October 30-31
- http://sites.ieee.org/sagroups-2247-1/

## ICICLE – The IEEE Industry Connections Industry Consortium on Learning Engineering

- Is there a need for a new engineering discipline to deal with the automation of education and training?
- Conference, May 2019, Arlington, VA
- Special Session at I/ITSEC 2018 Forming Military Training chapter of ICICLE
- Shelly Blake-Plock, Chair.
- Meetings monthly. <u>www.ieeeicicle.org</u>



#### For more information:

IEEE LTSCwww.ieee-ltsc.orgICICLEwww.ieeeicicle.orgIEEE Standards U.http://www.standardsuniversity.comStandards Lifecyclehttp://standards.ieee.org/develop/index.html

avron@ieee.org robby.robson@eduworks.com

Robson & Barr: The New Wave of Training Technology Standards



I/ITSEC 2018