Concurrent Presentation Session LEARNING SCIENCE FOR OUTCOMES

Bottom-up Views of Distributed Learning: The Role of Distributed Cognition

> **Garett Howardson, Ph.D.** U.S. Army Research Institute

Social: #ADLIFEST | WIFI: HILTON_MEETING / Password: ADLIFEST

U.S. Army Research Institute for the Behavioral and Social Sciences

Bottom-Up Views of Distributed Learning: The Role of Distributed Cognition

Briefing for:

*i*FEST 2019 Conference

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the Department of the Army, DOD, or the U.S. Government.

27/08/2019

Garett Howardson, Ph.D. U.S. Army Research Institute for the Behavioral and Social Sciences (ARI)

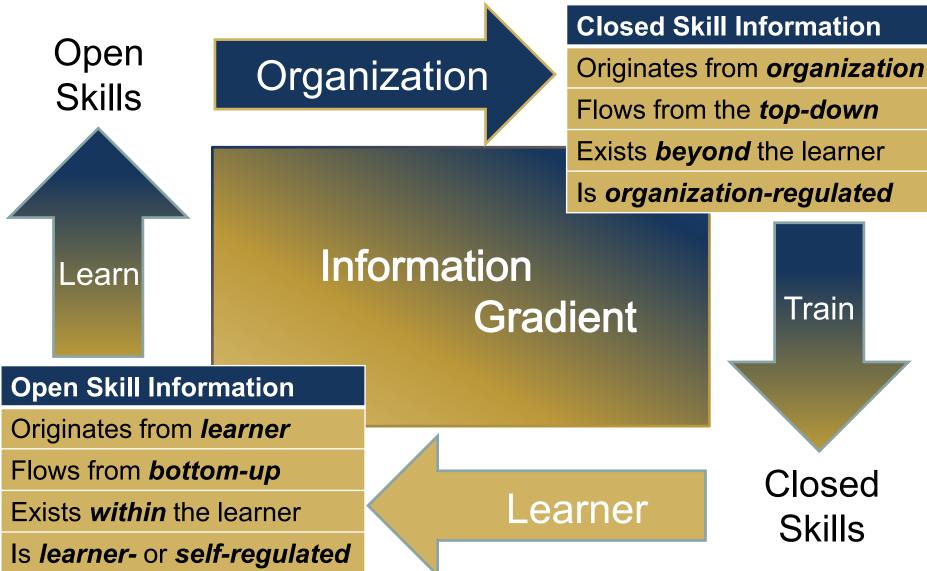
- Modern operating environment is dynamic and nonlinear
 - Classic Instructional Systems Design (ISD) model is linear and relatively* static
- Future success depends on individual-Soldierdriven and on-the-job learning
 - Within broader context of U.S. Army / Military needs
- Enter the role of distributed learning
 - Eases ISD constraints on creation \rightarrow delivery

- First distributed learning paradigm:
 - Centralized Information \rightarrow Learners
 - Origins: "First Generation" learning
- Second distributed learning paradigm:
 - Learners \rightarrow Centralized Information
 - Origins: "Second Generation" learning
- Third distributed learning paradigm:
 - Learners \rightarrow <u>**De</u>**centralized Information</u>
 - Origins: "Third Generation" learning

- Socially de-centralized information not always desirable
 - Examples: lockout / tagout, trash compactor, M249
- What is needed is a distributed learning paradigm incorporating 1st, 2nd, & 3rd features
- Modern operating environment is dynamic and nonlinear

- Integrate multidisciplinary research into dynamic, nonlinear distributed learning paradigm
- Emphasize theoretical concept of *information* gradient
- Span diverse spatial, social, and temporal scales

Machine Learning	Human Learning
Multilayer perceptron	Self-regulated learning
Hopfield nonlinear attractor network	Near and far transfer
Stochastic gradient descent	Part-task training



- Systems-based
 - Bottom-up emergent phenomena (e.g., learning)
 - Top-down system constraints (e.g., training)
- Skill-centric
 - Open and closed skills
- Grounded in *cognitive extension* (Clark, 2010)
 - Coupled internal-external functions no different than qualitatively different internal functions

- Now:
 - Multi-disciplinary narrative review integrating diverse learning science literatures via *information gradient* concept
- Near Future:
 - Collect critical incidents to derive prototypical bottom-up (i.e., learning) and top-down (i.e., training) experiences
- Far Future:
 - Develop open-source set of modeling tools spanning micro, meso, and macro distributed learning dynamics across diverse time (e.g., seconds, minutes, career) and social (e.g., individual, team) Scales

- Offer a common distributed learning language integrating micro, individual-level behavioral processes with macro, organizational-level processes
- Improve automatic and objective learner assessment in distributed high dimensional behavioral settings
 - Aggregate micro-level information to more *meaningful* level for learner feedback / training designers
- Improve communication between wide range of DoD stakeholders and policymakers interested in distributed learning

Thank you!

garett.n.howardson.civ@mail.mil