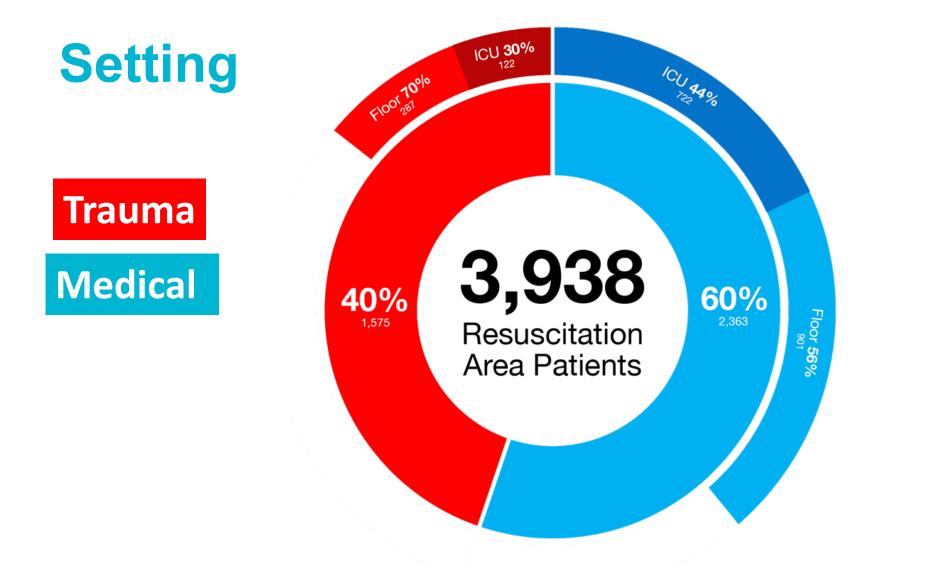
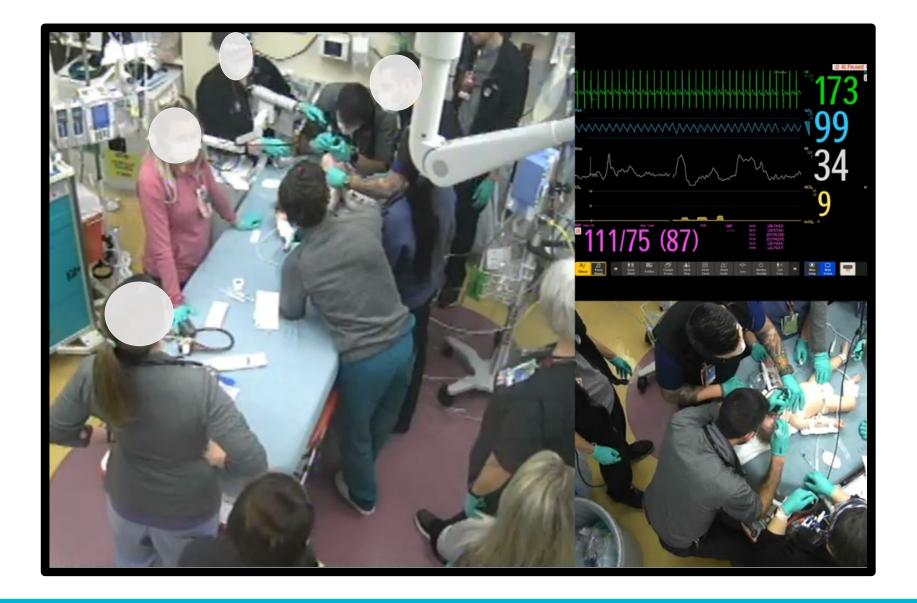


Simulation: Addressing the Challenges of Low Frequency Pediatric Emergencies

Gary L. Geis, MD Cincinnati Children's Hospital Medical Center University of Cincinnati, College of Medicine




Approach

- When problems or barriers are identified, they are represented through simulation allowing us to:
 - Increase the "n"
 - Explore new solutions
 - Measure chosen outcomes
 - Implement & monitor revised clinical practices

Problem

• Low Frequency: 261 procedures, 194 patients (0.2% ED patients)

Procedure	2009-10
Tracheal intubation	147
Intraosseous catheter	41
Tube thoracostomy	18
Central line	15

• Median faculty procedures = 0

Problem

Methods

- Video review of RSI
- 12 months

Results

- 48% 1st attempt failure
- 33% desaturation
 - Prolonged attempt duration
 - Younger age
- 20% esophageal placement

Kerrey BT, et al. *Ann Emerg Med*. 2012 Rinderknecht AS, et al. *Acad Emerg Med*. 2015

Strategy

Simulation

Non-technical Training Teamwork Communication Team Leadership Use of cognitive aids

<u>Technical Training</u> Knowledge around RSI Skills with Video Laryngoscopy Attitudes around timing, including empowerment of staff

Strategy

Preparation

Ask Team Leader if difficult airway suspected
Confirm apneic oxygenation started
Confirm pre-oxygenation started by NRB/CPAP/BMV
Start pre-ox timer (re-start if interrupted)
Identify intubator for initial and backup attempts
(Attending, PEM fellow or 2 nd -4 th year EM)
Define equipment for initial and backup attempts
Prepare one size smaller ETT (stylet and tube)
Confirm Medication selection/preparation
Pre-medications
Atropine (Bradycardia, age<12mo, <5yr & getting
Succinylcholine, 2 nd dose succinylcholine)
□ N/A
Lidocaine (suspected ICP or asthma)
□ N/A
Sedative
Etomidate
Ketamine
Fentanyl (heart dz with septic shock, 4 mcg/kg)
Paralytic
Succinylcholine
Rocuronium (K >5.5, suspected neuromusc. dz)
Confirm administration ASAP of Atropine/ Lidocaine
□ N/A
Confirm monoration of part intubation modications
Confirm preparation of post-intubation medications
Confirm ETCO ₂ monitor calibrated and ready for use

Confirm Storz in position/working (then turn off)

Laryngoscopy

Confirm 3 min of uninterrupted pre-ox Confirm Storz turned on/ready Ensure RN administers sedative and paralytic medications in rapid succession Start paralytic timer with flush Ensure 45 seconds since paralytic flushed Start attempt timer (45 seconds) upon insertion of blade into mouth Enforce stopping laryngoscopy for: 45 seconds since initial blade insertion DN/A O2 saturation drops below 95% DN/A Visualize ETT on Storz monitor passing through cords No – start re-oxygenation

Confirmation

 Confirm ETCO2 present within 20 seconds of ETT placement
 No – pull ETT and start

re-oxygenation

Administer post intubation meds

\checkmark

Unsuccessful Attempt

Confirm adequate re-oxygenation
Re-oxygenate via BMV until highest
achievable sat and then maintain for 1
min before next attempt
(Consider oral airway to assist BVM)
Discuss change in approach

(position, equipment, intubator, ANE) Re-dose sedative/ paralytic for:

Patient movement, ≥10 min since etomidate or succinylcholine, OR 2 failed attempts

Emergency Department RSI Checklist

Preparation

Ask if a difficult airway suspected (consider CAT)

Is the PICU-ED Team (PET) needed? (see reverse)

Confirm apneic oxygenation (rate 2 L/kg, max 15 lpm)

Confirm pre-oxygenation started by NRB/CPAP/BMV

Start pre-ox timer (re-start if interrupted)

Identify intubator: any attending, PEM fellow, 2nd-4th year EM resident, approved respiratory therapist

Pre-medications

Atropine if: bradycardia, age < 12 mos, <5 yr & giving sux, or 2nd dose of sux (give ASAP)

Confirm RSI Medication Selection

Sedatives

Etomidate

🗆 Ketamine

EFentanyl if: heart dz with septic shock (4 mcg/kg)

Paralytics

Succinylcholine

Rocuronium if: K >5.5, suspected neuromuscular disease, or hx of malignant hyperthermia

Confirm atropine given (if indicated)

Confirm preparation of post-intubation medications

Confirm RT prepared airway cart/Storz

Second senior physician at bedside to be in charge of the checklist "CO-PILOT"

Use of apneic oxygenation & preoxygenation

Limited recommendations for premedications, sedatives & paralytics

Laryngoscopy

Confirm 3 min of uninterrupted pre-ox

Confirm RT/proceduralist record attempt

Ensure sedative and paralytic in rapid succession (med-flush-med-flush)

Start paralytic timer with flush

Ensure 45 seconds since paralytic flushed

Start attempt timer (45 seconds) upon insertion of blade into mouth

Stop attempt for: 45 seconds timer (alarms) 0₂ saturation drops below 95%

Visualize ETT on Storz monitor passing through cords

No – start re-oxygenation

STORZ C-MAC VIDEO LARYNGOSCOPY

Timing of intubation attempt in relation to RSI medications

Limitation on duration of laryngoscopy

Confirmation

Confirm capnometry tracings are present within 20 sec of ETT insertion

No – pull ETT and start re-oxygenation

Administer post-intubation meds

Unsuccessful Attempt

Confirm adequate re-oxygenation Re-oxygenate via BMV until highest achievable sat and then maintain for 1 min before next attempt (Consider oral airway to assist BVM)

Discuss <u>specific</u> change in approach (position, equipment, intubator, ANE)

Re-dose sedative/ paralytic for: patient movement OR 2 failed attempts

Recovery techniques for missed intubations, including timing

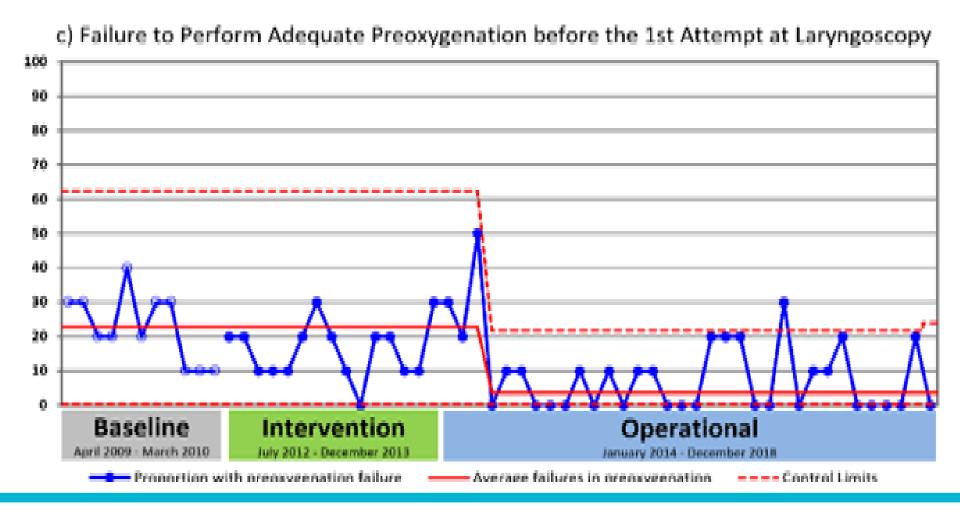
Strategy

Course	Setting	Foci
ED Procedural Training	Lab	Video Laryngoscopy
ED/ICU Bootcamp	Lab	Video Laryngoscopy, Checklist
ED Patient Safety*	Lab	Checklist, Co-piloting
ED Team Safety*	Lab	Checklist, Co-piloting
Trauma Team*	Lab	Checklist, Co-piloting
ED In Situ*	Trauma Bay	Video Laryngoscopy, Checklist, Co-piloting
Airway Management	Lab, Trauma Bay, Classroom	Video Laryngoscopy
Medical Video Review*	Classroom	Video Laryngoscopy, Checklist, Co-piloting

*interprofessional +/- multidisciplinary training

Outcomes

	Baseline	Intervention	Operational
	(2009-2010)	(2012-2013)	(2014-2018)
	n=114	n=105	n=377
Age (median, IQR)	2.4 (0.4, 10.1)	3.0 (0.4, 10.8)	2.3 (0.4, 10.6)
< 24 months	53 (46%)	43 (41%)	186 (47%)
Diagnostic Category			
Neurologic	39 (34%)	33 (31%)	141 (36%)
Respiratory	29 (26%)	13 (13%)	101 (26%)
Trauma	21 (18%)	22 (22%)	91 (23%)
Shock	13 (11%)	21 (21%)	27 (7%)
Other	12 (11%)	13 (13%)	36 (9%)
Attempt Success			
First	59 (52%)	66 (63%)	266 (67%)
First or Second	84 (74%)	92 (90%)	335 (85%)



Outcomes

	Baseline (2009-10) n=114	Intervention (2012-13) n=108	Operational (2014-19) n>300
Use of checklist	n/a	87%	93%
Attempt < 45 sec	72%	87%	93%
Video Laryngoscopy	n/a	85%	94%
Desaturation	33%	18%	18%
Esophageal placement	20%	<2%	<2%

Outcomes

Next steps

 This strategy was expanded to focus on highrisk intubations:

Ask if a difficult airway suspected (consider CAT)
 Is the PICU-ED Team (PET) needed? (see reverse)

- Difficult airway
 - Critical Airway Team (CAT): Anesthesia, ENT, Respiratory Therapy and a similar checklist tool
 - 13 activations in the ED since 2015
 - >100 activations hospital wide
- Physiologically challenging patient
 - PICU- ED Team (PET): Critical Care, Emergency Medicine, Respiratory Therapy and an a novel checklist tool
 - 13 activations in the ED since 2019

Johnson K, et al. Arch Otolaryngol Head Neck Surg. 2012

Next steps

*Data for all *medical* RSI cases from 2016-present.

	Non-PET Eligible	PET Eligible	PET Intubations Since Go-
	(Historical Controls	(Historical Cases by	Live in April 2019
	by Chart Review)	Chart Review)	(Obtained by Video Review)
Total*	180 (82.9%)	37 (17.1%)	13
Peri-intubation arrest	0/180 (0%)	2/37 (5.4%)	0/13 (0%)
Any post-intubation	0/180 (0%)	4/37 (10.8%)	0/13 (0%)
STS arrest			
In-hospital Mortality	5/179 (2.8%)	9/36 (25%)	2/13 (15.4%)
ECMO	0/179 (0%)	3/36 (8.3%)	1/13 (7.7%)
First pass success	120/180 (66.7%)	18/37 (48.6%)	8/13 (61.5%)
IVF prior to RSI	127/180 (70.6%)	36/37 (97.2%)	12/13 (92.3%)
Vasopressor support	0/180 (0%)	11/37 (29.7%)	5/13 (38.5%)
prior to RSI			
Defibrillator pads on	n/a	n/a	6/13 (46.2%)
prior to RSI			
Backboard under	n/a	n/a	6/13 (46.2%)
patient prior to RSI			

Dean P, et al. *Unpublished data*. Abstract accepted to PAS Meeting May 2020.

Summary

- Simulation can increase the "n" when faced with infrequent, high risk clinical situations in healthcare, creating a safe and efficient setting for training & assessment
- Simulation is a great strategy for quality improvement science
- Lessons learned from one simulation-based project translate across clinical units and care processes

