Using the ‘Red Pill’ to Conceptualize Training Optimization; Insights on Future Learning Ecosystems from ‘The Matrix’

Regan Patrick, Ed.D.
CAE
Using the ‘Red Pill’ to Conceptualize Training Optimization

Insights on Future Learning Ecosystems from ‘The Matrix’

iFEST 22

Dr. Regan Patrick, Chief Learning Officer, CAE Defense & Security

August 2022
What did Trinity “Learn”? (In less than 30 seconds!)

- Comprehensive technical skills training
- Start and operate a medium-lift twin engine helicopter, single pilot, day/VMC, high-rise urban environment, AIE, weapons employment, emergency procedures, high-performance tactical aircraft maneuvering
- Restructuring of neural networks and mental models to shift information processing from:

 Conscious
 Limited attentional resources, working memory capacity

 Subconscious
 Second nature, muscle memory

CAE Inc. Proprietary Information and/or Confidential
Training Requirements

‘Matrix’ Example

- Clear statement of expectations and outcome ("a pilot program")
- What was Trinity’s prior aviation experience?
- Needs analysis and feedback

22nd Century Expectations

- Precise training on a specific skill or behavior at precisely the right time, at the precise level of knowledge for the stated requirement and student
- Detailed understanding of student’s previous knowledge and experience
- Training Needs Analyses (TNA) structured around refined requirements schedules and evaluation strategies, fully integrated into performance feedback loops
Methodology

‘Matrix’ Example

- Time to train is critical
- Receive, comprehend, and assimilate complex knowledge quickly
- Trinity did not view a PPT slide deck

22nd Century Expectations

- Time becomes the most precious training variable
- Rapid content delivery based on previous experience and knowledge
- ISD strategies and taxonomies to align approach and media (hyper-focused, individualized curriculum)
 - Neuroscience and behavioral psychology as ISD tools
 - ‘Bake in’ high levels of flexibility and adaptability
- Adaptation and improvisation, reflecting higher order cognition and synthesis skills
- Metacognitive and self-efficacy practices, competency-based learning frameworks, adaptive learning construct
Tools & Environment

‘Matrix’ Example

• Specific tool for specific outcome
• Injecting knowledge vs. acquiring it on demand
• Trinity did not rehearse in “The Construct”

22nd Century Expectations

• Media analysis to deliver ‘right tool, right outcome’
• Brick & Mortar to Metaverse
 • Distance Education / Distributed Learning
• Synthetic Environments for learning and rehearsal
• Understanding training needs for unknown or indeterminate variables
• Flight Training vs. Jujitsu
Trends for Future Learning Ecosystems

Technological and Methodological Changes for 22nd Century Training System Design

- **Biometrics / Cognitive Load Structures**
 - Enhanced understanding of human performance limitations in learning

- **Human/Machine Teaming (HMT) / Brain-Computer Interface (BCI)**
 - Reassessing the interaction between human and machine

- **Blockchain**
 - Immutable, secure personal training records

- **Integrated Virtual Classrooms**
 - Integrating VR and experiential learning constructs
Thank you

Dr. Regan Patrick, Ed.D., PMP
Chief Learning Officer, CAE Defense & Security
Chantilly, VA, USA
regan.patrick@caemilusa.com
+1 (830) 358-8726
Elements of Adaptive Learning

Personalized learning journeys, integrating instructional methodology with education technology to improve outcomes and capacity.

- Monitoring user activities
- Interpreting domain-specific models
- Inferring requirements and preferences
- Model representation
- Dynamically facilitating the learning process

Learner Profile
- Demographics
- Previous Experience
- Individual Competencies

Learning Science
- Cognitive Load
- Biometrics
- Evaluation Strategies

Learning Management System
- Accessibility
- Integration
- Security

Distributed Instruction
- Security
- Platform Agnostic
- Social Connections

Technology
- VR/AR/XR
- Artificial Intelligence/Machine Learning
- Gamification
- LVC

Low-Cost Individual Training Devices
- Accessible
- Affordable
- Concurrency

Feedback Systems
- Student / Instructor
- Program
- End User

Data Analytics
- Structures to Collect / Analyze
- Security
- Exploitation Strategies

Future Trends in Learning Science

- **Biometrics / Cognitive Load Structures**
 - Enhanced understanding of human performance limitations in learning

- **Human/Machine Teaming (HMT) / Brain-Computer Interface (BCI)**
 - Reassessing the interaction between human and machine

- **Blockchain**
 - Immutable, secure personal training records

- **Integrated Virtual Classrooms**
 - Integrating VR and experiential learning constructs
Future Trends in Learning Science

• Micro-learning vs. Comprehensive Instruction
 • Student-focused standards in instructional design

• Credentialing / Badging
 • Reimagining competency-based approaches to evaluation and certification

• Increasing Emphasis in Environmental and Social Governance (ESG)/Diversity, Equity, and Inclusion (DEI)
 • Culturally-reflective education models